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A GAME THEORETIC APPROACH - EVASION PROBLEM FOR A LINEAR SYSTEM WITH 
INTEGRAL CONSTRAINTS IMPOSED ON THE PLAYER CONTROL* 

A.M. SOLOMATIN 

A differential approach-evasion game with integral constraints imposed on 
the player controls is considered. A positional strategy is proposed, 
supplying a solution to the approach problem , and conditions are given under 
which the set of programmed absorption has the property of stability. 

Differential games of this type were first studied in /I, 2/ where 
the pursuit-evasion problem was considered for single type systems, and 
auxiliary constructions were proposed for use as a basis in constructing 
a positional strategyinthe form of the strategies of external aiming. 
Stable bridges of programmed absorption /3/ for linear, generally speaking, 
non-single type objects, were considered, and the construction of strategies 
extremal with respect to these bridges were demonstrated. A solution of 
the problem of approach in the class of positional procedures of control 
with a guide was proposed in /4/. It should be noted that the question 
of whether it is possible to construct resolving positional strategies in 
differential games with integral constraints, remains open. 

The present paper is related to the investigations described in /l-B/. 

1. Let a motion of a conflict-controlled system be described by the equation 

-&=A(t)x+B(t)u+C(t)u, te[t,,6], z&,)=x9 (f-1) 

Here x is an n-dimensional phase vector of the system, u and v are the controls of the 
first and second player respectively and represent the elements of the space RF* and R', A (0. 
B (0, c @) are matrices of the corresponding dimensions depending continuously on t. 

We assume that the player controls satisfy the following constraints 

and write 

1 

We assume that every player knows the current position of the game. fn + 3)-dimensional vector 
it* 21 ['I, Z? [fl, x [Xl). 

The problem facing the first player is that of choosing the control u which ensures that 
the point z[6] = (zl [fi], 2% [6],s [a]} arrives at the set M* = {z: z = (z,, zy, z), z1 > 0, zg 2 0, I E M). 
Here M is a convex compactum belonging to R". 

2. Let us list the necessary concepts and notation. We denote by U~r),I_,V~+,zl, Al;; the 
sets defined by the relations 

V ~..,.=i.~.~:u(.)EL~[l,.a~,~~u~T~,,zdT~~~.] 

T’i,, t* = 
i 
v(~):v(~~EL.I~~.~].~llv(u)l~*d~~r~.) 

Here t, E ff,, rt], .z* E: RT=;?. We use the symbol 

2 (t: t,, 2*, v* (*)) @+ E! [to* 61 

z* E R?:;, t E [t*, *,I v* (.) Ez v,.,.J 

*Prikl.Matem.Mekhan.,48,4,568-573,1984 401 



(2.1) 

to denote the set of points 

where 
s = (21 (Q, 22 (t), 2 (t)) 

21(t) =s1* - s II U(7) [lad-c, zo(t) = G.- s u v(z) II* dr 
f* i* 

z(t)=X[t,t,]s,+~ X[t,z](B(r)u(~)fc(~)~(~))d~ 
1* 

Here X[t,z] is the fundamental matrix of system (l-l), ZJ b) (7 E [tt+, +I) denote all 
possible functions of Ut_,.. 

Definition 2.1. We shall call the system of sets {W(t): W(t)= RTq=;, t c=[t,,6]} a u-stable 
bridge if the following conditions hold: 

1) W(@)EM* 
2) the relation 

2 0*: t,, s+, v* (.)) n w G') # 0. 

holds for any instant of time t, and t* from [to,61 (t* < t*), any point z* E kV(t,) and any func- 
tion a+ (*) E vt.,z.. 

We will use the symbols T", T,, (h > 0) to denote the mappings of the set of all subsets 
of the space RyG into itself, defined by the relations 

Here GG,, is the closure of the convex shell /7/ of the set G,, = {z: LEG, z, = q}, Z(z*) = 

(2: ZI* < z1 <h, 0 <zz <z,*, z = Z*}. Let {W(t): t~[t,,@]} be a u-stable bridge. 

Assertion 2.1. The systems of sets 

{To (W 0)): t E [to, +I), {Ttt W’ (0): t E [to, fill (h > ‘4 
are u-stable bridges. 

Below we shall assume that the folloiwng relation holds for the u-stable bridges in ques- 
tion: 

T" (W(t)) = I+' (0 0 E [to, 61) 

and, that we can find h> ~0~ such that the relation 

Th (w(t)) = J%'(t) (t E [to, e]) 
holds. We also assume that the following assumptions hold. 

Assumption A. The inequalities 

** 
1 I11'H,[t*,T]1(2dT>o, i-l,2 
1. 

where 
H, [t*, r] = X [t*, ~1 B (T) 
Hz [t’, r] = x [t’, r5] c (7) 

hold for any unit vector l(1~ R", I] I]] = 1) and any instant of time &and t* from [t,,+](t*<t*). 

Assumption B. A constant a>0 exists such, that for every instant of time T from [&,,+I 

and any unit vector n = (nl, O,n& of the outer normal to the set W,,(r) (n > 0, W,, (z)# E), the 
inequality 

nl< --or 

holds at the point Z(ZE akV(r),zl >O). Here the symbol ak%' denotes the boundary of the set W. 

Lemma 2.1. A constant L>O exists such, that for any instants of time t,and t* (t,< t*) 

'u:": [&I, 61, any point z,belonging to W(t,) and any function v*(.)E Vi,,,, a function u(.)f 

. . . can be found such that 

5 1) a(T)]]*d+ -(.L((t* --t,) 
t* 

and the inclusion 

z (P: t,, z*; a (.), v (.)) fz w (t') 

holds. Here z (t*: t,, z*: u (.), v (.)) = (zl (t*), z1 (t*), z (t*)) is given by equations (2.1) _ 
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3. Definition 3.1. We define as the admissible positional strategy V of the first player, 
the mapping U&z) = w,* (.) of the positional space (t,z)(t~ [t,,6],zE Rn’) onto the set ZJ,,,. 

We denote by r= (ri: t,=zo<sl<...<r.=6} an arbitrary partition of the interval 

ito, 61. 
Definition 3.2. We shall call the Euler polygonal line Yr itI = Yr tt: to, h U: v I.11 cm- 

responding to the positional strategy V of the first player, and generated by the partition 
r and realization of the control v[.] of the second player (v[.]E Vi,+), the solution of 
the set of equations 

f %r = - II u (Tir Yi) 112v $ z?r = - II u [t] 11’ 

& rr= A (t) zr + B(t) U (7%. Yi) + C(t) v[t] 

ri G r9 Y, = Yr hi] (i = 0, 1, . . *7 S), t E [Ti, Ti+J 

0 = 0, 1, * . ., s - 11, Yr (to) = Y,, Y = (z,, z*, z) 

Definition 3.3. We shall call the function z [t] = z[t: t,,y,, U] the motion of (1.1) cor- 
responding to the admissible strategy of the first player and emerging from the initial point 
Y, = (~02,vO*,zO) at the initial instant t,, provided that a sequence of Euler polygonal lines 

Yr(k) [t] = Y,'(k) it : tO(!b2. v,?r zk), u* vk [‘I] (k = 1 t 2, . . .) 

can be found, satisfying the conditions 

The existence of the motions follows from Arzela's 
{rr(k)[.]) is uniformly equibounded and equicontinuous. 

Let the position (t,,z,) satisfy the conditions 

t, E ItO* 61, z* E {~?~2 \ w Q*)), 
G \ F = {z: z E G, z e F) 

We consider the point z*defined by the relation 

theorem /S/, since the set of functions 

wZ*. 0,) # Ci7. 

Ilzt-z*II= zs&?;;t*) II z* -z 1 

Since the set Wz2 (t*) is convex, we have the relation z* -z* = n*]Iz, -z*)I; s* = 

(nl*, 0, nc3j*) represents 'a suitable unit vector of the outer normal to the set 
here 

point z*. 
Wzz. PA at the 

Let us obtain the vector u* (t,,z,)= II* from the relation 

Y -IlUll 
min n*‘.f(t,,z,,u,v)=n*‘.f(t,,z,.u*.u) 
lIEi+ 

f(t,z,u,u)= - II lJ II’ 
A(t,)s, + B(t,)u + C(t,)v 

It can be shown that 

u,' = n+‘-B (t,)ln,* 

By virtue of the assumption B a constant K (K>O), can be found such that the following 
inequality holds for any (t*, z,J (tL E [to, 131, Z* E {&‘A’ \ W (t,,), z1 > 0, Wrs.= 0)): 

II w, (tw z,) II < K 
Definition 3.4. We shall mean by the admissible extremal strategy U(e) of the firstplayer, 

the following mapping U(r) = ZL~,~ (.): 
1) if z~ W(t), then 

%,r (7) = 09 (r E [t,61) 
2) if z 65 W (0, W,.(t) # 0, then 

3) if z S& W (t), 

Theorem 3.1. If 
within the set W(t,), 

w, I(7) = 

u* (t. z). z1- II u+ 0. z) II* (T - t) > 0 

0, 

(7 E [t* 61) 
z1- II u* 0, zj II’ (t - t) < 0 

W,, (t) = 0, then 

4.2 (r) = 0 (z E It? +I) 
the initial state of the game is such that the point y,, ==(~Oz,vO*,zO) lies 
the extremal strategy U(g) will bring any motion s[t]= t [t: to,yo, UO] 
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to the target set M at the instant 8. 

The proof of the theorem is based on the estimation of the distance between the Euler 

polygonal line and u-stable bridge V 0): t E [to, @I) in a Euclidean metric. 

We will show that the Euler polygonal line generated by the partition r of the interval 

[to* 61 and the realization of the control v [.I of the second player (V [.I or' V~,.(~O*,+l)), 

satisfies one of the following inequalities: 

where 
e[x,] = minllz, - ml1 

SEM‘ 

~(6) is a function continuous near 0, and lim cp (6) = 0 (6 -+ 0). 

4. Let us introduce 

It can be shown that 

form 

a new phase vector I(') connected with the vector I by the relation 

x(l) = x [(t, t] 5 (4.1) 

in the new variables the differential equation (1.1) will have the 

-gx”‘=X[l!ht]B(t)u +x[e,t]C(t)v (4.2) 

t E [to, $1, z(1) (to) = x p, to] 50 

Since X[+,tt] = E, it follows that the set M* must be the target set for system (4.2). 

Relabelling the matrices .X[6,t]B (t),X[6, t]C(t), and the vector x(l) as B(t),C(t) and x re- 

spectively, we obtain the initial system (1.1) where A (t) = 0 (t~[t,,6]). 
We shall assume in subsequent discussions that the set M is defined by the relation 

M = {z: r E R", II 511 <d} (d >, 0). 

Let the following condition C hold: for any instants of time t, and t* (to Q t,< t* <ti), 
and any vector 1(1 E R", II111 = i), the matrix functions C(.), B(e) satisfy the inequality 

[i ,,l’C(r)II’d~]~‘f IIl'B(z)1l*dr< [j” I~~‘C(T)I~~~T]~~~~ /II’B(T)I)“dT 
hl 1’ t= I* 

Theorem 4.1. A system of sets (W(t: 6, M*): t E [to,611 is the maximum u-stable bridge for 

the set M*. Here 

W (t: 6, M*) = {z: z = ($7 yz, I), p > 0, Y > 0, 5 E R; 

I_~N=l [ - P( i II 1’B W II2 dt)“’ i,v (i II l’C(t) II2 dt)“’ + l’x] G} 
c . 

time 

Its proof is based ou the following lemma. 

Lemma 4.1. Let n = p = 4 = 1 and let the function C(.), f?(.) satisfy at any instants of 

t,and i* (to < t,< t* <,<) the inequality 

[5 Ce (t) dr]"'i B2(z)dt > f/(,) dt]“’ [ B2(t) ds 
t* 

Then the system of sets {W(t: 6, M*): t ~[t,,6]} will be a maximum u-stable bridge for the 
___ 

The proofofthe lemmaisbased on the proof of the relation 

aw(t*:s,M*)n(Z(t*:t,,z,,v,(.))IriZ(t*:t,,z,,v,(.))}#~ 

for any instants &and t* (to < t,( t* ,<6), anypoint z* (z* ew((t,: 6, M*)) andan arbitrary 

function u* (0) (v, (.) E Vt..r,). 
Here ri Z denotes the relativeinterior/T/of thesetz. The maximumproperty follows from 

the fact that W(t: 6, M*)is thesetof programmed absorption /3/ for M*in the time interval [t,+]. 
Condition C has the property of sufficiency, since if B (t) = const, C (t) = const, then we 

know that the system of sets (W(t: 6,M*): tE[t,,6]} is a maximum u-stable bridge /3/ although 

condition C is clearly not satisfied. 

Example. Let the dynamics of the controlled system be described by the equation 
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lj, = y3, Q? = y,, & = VI, !j, = “2. i, = u,, P? = CL? (4.3) 

iE(lg,6], Yi[kll=YioI zjIs]=rj” (1=1,..., 4; i=l,Z) 

Here Y =(Y1,Yp) are the coordinates of the material point m(n,(!/ J,~/9)are the velocity com- 
ponents of this point, v=(v,,u,) is the control applied to the inertial point m('),z = (z,,+) are 
the coordinates of the inertialess point mo) which is controlled by the choice of the veloc- 
ity u = (I+, u*). The player with control u must succeed in ensuring that the inequality 

I/ 2 WI - Y IWil f d (d > 0) 
holds at the instant 13 whatever the method of control u. The following constraints are im- 
posed on the realizationsofplayer controls u I.17 u [.I : 

Using the transformation (4.1) we change to the new variables 

11. = y1 - 51 + (6 - t) ys, z* = Y, - 2, + (6 - t) Y, 

whose variations are described by the equations 

d 
-;iT q* = (6 - 1) “I - Ul, & x2* = (6 - 1) “* - U? (4.4) 

a* It01 = Yl" - ac + (t, - kl) Ya", rf PO1 = Y*O - Jh” + (6 - to) y,O 

It is clear that the following relation holds: 

II I* WI II = II Y WI - 2 WI II, 25. = w. z?*). 

It can be confirmed that system (4.4), equivalent to system (4.3), satisfies condition C. 
In conclusion we note, that the system of sets (W(t: 6, M*): t E [lo, 6 - 61) (0< 6~6 - iO) 

from Theorem 4.1 satisfies assumption B. 
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